PERVIOUS CONCRETE RESEARCH PROJECT: PHASE II

By: Fawaz Almutairi, Fahad Aloqaili

CENE 486: Senior Design

PRESENTATION OVERVIEW

- Project Background
- Project Objective
- Project Management
- Material Preparation
- Mix Design Formulas
- Results
- Summary of Project Cost
- Future Research Suggestions and Conclusions

PROJECT BACKGROUND

- Applied Research Development (ARD) building parking lot made of pervious concrete has **failed** after three years of completion (2007).
- Flagstaff experiences 250 freeze-thaw cycles in one year.
- Project Client/Technical Advisor: Dr. Chun-Hsing Jun Ho.
- Junyi Shan and Darius Ishaku finished Phase I in Dec 2013.
- EPA recommends pervious concrete pavement to reduce surface storm water runoff and treat the stormwater on-site.
- Records show that 25% of the pervious concrete pavement installations have failed.

http://nau.edu/CEFNS/NatSci/SESES/Climate-Science-Solutions/

https://sites.google.com/site/junhonau/

PROJECT OBJECTIVE

- Develop pervious concrete mix design which can withstand the cold climate and high frequency of freeze-thaw cycles of at least 300.
- Minimum compressive strength of 2500 psi and a minimum void ratio of 17%.
- Apply the **best** mix design formula to the ARD parking lot.
- Compare the impacts of fiber and silica fume on the mix design formulas.

Pictures Taken By Fahad and Fawaz

PROJECT MANAGEMENT (TASK LIST)

- Task 1- Team Management
- Task 2- Project Development
- Task 3- State of the Art Literature Review
- Task 4- Material Preparation

- Task 5- Mix Formula Development
- Task 6- Specimen Production
- Task 7- Lab Testing
- Task 8- Data Analysis
- > Task 9- Final Deliverable

Pictures Taken By Fahad and Fawaz

MATERIAL PREPARATION

- Portland cement type II
- ▶ Water
- Coarse aggregate:
 - Prescott:
 - Basalt only
 - Camp Verde
 - Basalt, Limestone, Quartzite, and Granite
 - #4(0.187"),1/2", 3/8", and 3/4"

- Fine aggregate (nature sand)
- Fiber (Fibermesh@150)
- Silica fume
- Admixtures
 - Hydration Stabilizer
 - Mid-range Water Reducer
 - Viscosity Modifier
 - Air Entrainment

Molding

De-Molding

Specimen with Fiber

Specimen Without Fiber

Curing Samples

Pictures Taken By Fahad and Fawaz

MIX DESIGN FORMULAS

ASTM C 192/C 192M-02 Specimen Preparation Procedure

	Material Proportion (lb./yd ³)								
Mix ID#	Ag	gregate	Gradatio	n					
	#4	3/8"	1/2"	3/4"					
#25 CV	250	400	1850	-					
#26 CV	500	500	1500	-					
#27 CV	250	750	1500	-					
#26 PR	500	500	1500	-					
#27 PR	250	750	1500	-					
#30 PR	500	500	1250	250					
#31 PR	-	1000	1500	-					
#32 PR	750	200	1550	-					
#33 PR	750	350	1400	-					
#16 PR	1000	1500	-	-					
#34 PR	850	450	1200	-					

Material Proportion (lb./yd ³)							
Cement	Water	w/c ratio	Sand				
616	169.4	0.275	200				

	Fiber			
Delvo	P900	Micro Air	vma	(lb./yd ³)
105	36	12	20	1.1

COMPRESSIVE STRENGTH AND VOID RATIO RESULTS

ASTM C127 Void Ratio Test Procedure ASTM C39 Compressive Strength Test Procedure **Compressive Strength** Void Ratio Mix Number 7-day Comp.(psi) 28-day Comp.(psi) Sample 1 Sample 2 #25 CV 1107 955 N/A 1115 24.5 26.7 #26 CV 23.6 22.6 1300 1354 1415 1354 #27 CV 1115 1258 1369 1831 18.7 23.8 #26 PR 2548 2189 22.2 20.4 2651 N/A #27 PR 2014 19.2 1871 N/A 2309 17 1823 20.1 20.5 #30 PR 1433 1690 1779 #31 PR 2699 2879 2946 2923 17.5 17.1 #32 PR 2538 2787 2548 20.6 18.8 1982 #33 PR 2502 1911 2946 2962 17.2 17 21.2 23 #16 PR 2866 2906 3177 2986 #34 PR 1831 1672 2070 N/A 17.3 17.2

N/A: not reasonable result

COMPRESSIVE STRENGTH AND VOID RATIO RESULTS

ASTM C39 Compressive Strength Test Procedure ASTM C127 Void Ratio Test Procedure

	(Compress	ive Strengt	'n	Void Ratio (%)					
Mix Number	7-day Co	omp.(psi)	28-day Comp.(psi)		Sample 1	Sample 2	Sample 3	Sample 4		
31 No Fiber/SF	2150	2229	2389 2477		20.8	20.9	20.4	21.8		
31 Fiber	2492	2548	2673	2708	21.6	21	19.3	21.9		
31 SF	3362	3424	3495	3554	18	19.2	18.3	18.8		
31 Fiber/SF	3838	3933	4154	4033	20	19.1	19.4	18.8		

FINAL MIX DESIGN FORMULA

Material Proportion (Ib./yd ³)						Admixture(oz.)				Fiber	Silica			
Mix ID#	Cement	Water	w/c ratio	Sand	Aggi #4	Aggregate gradation #4 3/8" 1/2" 3/4"			Delvo	P900	Micro air	vma	(lb./yd³)	Fume (lb)
#31 SF	585.2	166.3	0.27	200	1000	-	1500	-	105	36	12	20	-	0.068
#31 SF/Fiber	585.2	166.3	0.27	200	1000	-	1500	-	105	36	12	20	Fiber 150, 1.1	0.068

- Based on Freeze-Thaw Cycle Results, the best of the two formulas will be chosen as the FINAL Mix Design Formula.
- Freeze-thaw Cycle test is in progress as it will be done by the end of the year. (Currently at 90th cycle)

SUMMARY OF PROJECT COST

Type of Worker	Rate \$/Hr
1. Senior Engineer	140
2. Project Engineer	110
3. Engineer in training	75
4. Intern/Technician	60

Cost of Phase II						
Total Hours	380	\$	35,161.67			
Equipment Cost	Total	\$	3,717.39			
Total Cost of Pre	oject	\$	38,879.06			

Initial cost estimation: 30,750.00\$ Final cost estimation: 38,879.06\$

CONCLUSIONS

- #31 is the final mix design formula which had the highest compressive strength results with an acceptable void ratio.
- Fiber connects aggregate particles together and increase the compressive strength.
- Silica fume has a significant impact on the performance of pervious concrete.
- Aggregate from Prescott, AZ has better performance than Camp Verde, AZ aggregate.

FUTURE RESEARCH PLAN

- The Freeze-Thaw Cycle Test will continue until the samples have completed at least 300 cycles or have failed.
- Apply the Final Mix Design Formula to the ARD parking lot and monitor its performance.
- Continue with developing mix design formulas to find better results in Compressive Strength and Void Ratio.

Pictures Taken By Fahad and Fawaz

ACCOMPLISHMENTS

Won 1st Place for Arizona Pavement/Materials Conference 2014 (Picture with Dr. Rita Cheng, NAU President) Won 2nd Place for ASCE Arizona Conference 2014 (Picture with Brent Borchers, P.E., AzSCE President)

15

ACKNOWLEDGEMENTS

- Dr. Chun-Hsing Jun Ho (Technical Advisor and Client)
- Junyi Shan, Darius Ishaku and Mengxi Du (Phase I Team)
- Professor Wilbert Odem (CENE 476 Instructor)
- Professor Bridget Bero, Dr. Charles Schlinger, and Mr. Mark Lamer (CENE 486C Instructors)
- Mr. Vere Harris, Quality Control Manager, CEMEX at Prescott, AZ.

Picture Taken by Junyi Shan

16

REFERENCES

- National Ready Mixed Concrete Association (NRMCA). Freeze-Thaw Resistance of Pervious Concrete, NRMCA, Silver Springs, MD, 2004.
- http://nau.edu/CEFNS/NatSci/SESES/Climate-Science-Solutions/
- https://sites.google.com/site/junhonau/home
- http://www.cemexusa.com/
- http://www.astm.org/Standard/
- http://water.epa.gov/polwaste/npdes/swbmp/Pervious-Concrete-Pavement.cfm

QUESTION \$?

18